
Auraglyph
Handwriting Input for Computer-based Music Composition and Design

Spencer Salazar
spencer@ccrma.stanford.edu

Ge Wang
ge@ccrma.stanford.edu

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University
Stanford, CA 94305

Figure 1: Auraglyph in use.

ABSTRACT
Effective software interaction design must consider all of
the capabilities and limitations of the platform for which
it is developed. To this end, we propose a new model for
computer music design on touchscreen devices, combining
both pen/stylus input and multitouch gestures. Such a
model surpasses the barrier of touchscreen-based keyboard
input, preserving the primary interaction of touch and di-
rect manipulation throughout the development of a complex
musical program. We have implemented an iPad software
application applying these principles, called “Auraglyph.”
Auraglyph offers a number of fundamental audio process-
ing and control operators, as well as facilities for structured
input and output. All of these software objects are created,
parameterized, and interconnected via stylus and touch in-
put. To enable these interactions, we have employed a pre-
existing handwriting recognition framework, LipiTk, which
is capable of recognizing both alphanumeric characters and
arbitrary figures, shapes, and patterns.

Keywords
handwriting input, computer music systems, handwriting
recognition, touchscreen, tablet computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

1. INTRODUCTION
Touch interaction has profoundly altered the landscape of
mainstream computing in the early 21st century. Since
the introduction of the iPhone in 2007 and the iPad in
2010, numerous touchscreen devices have entered the popu-
lar consciousness – mobile phones, tablet computers, smart
watches, and desktop computer screens, to name a few.
New human-computer interaction paradigms have accom-
panied these hardware developments, addressing the com-
plex shift from classical keyboard-and-mouse computing to
multitouch interaction.

We propose a new model for touchscreen interaction with
musical systems: the combined use of stylus-based hand-
writing input and direct touch manipulation. This system
provides a number of advantages over existing touchscreen
paradigms for music. Stylus input, complemented by mod-
ern digital handwriting recognition techniques, provides a
number of advantages in this scheme. Firstly, it replaces
the traditional role of keyboard-based text/numeric entry
with handwritten letters and numerals. It additionally al-
lows for modal entry of generic shapes and glyphs, for ex-
ample, canonical oscillator patterns (sine wave, sawtooth
wave, square wave, etc.) or other abstract symbols. Fi-
nally, the stylus provides precise graphical free-form input
for data such as filter transfer functions, envelopes, and pa-
rameter automation curves. Multitouch finger input con-
tinues to provide functionality that has become expected of
touch-based software, such as direct movement of on-screen
objects, interaction with conventional controls (sliders, but-
tons, etc.), and other manipulations. Herein we discuss the
design, prototyping, and evaluation of such a system, which
we have named “Auraglyph.”

Proceedings of the International Conference on New Interfaces for Musical Expression

106



2. RELATED WORK
In our research, handwriting recognition has previously found
limited use in interactive computer music. Most notably,
Garcia et al. studied the use of handwritten sketches and
outlines as a preliminary exercise in electronic composi-
tion [5]. This study was then used as the basis for mapping
the strokes of an camera-augmented pen to real-time musi-
cal synthesis, aiding the compositional process. Graphical
manipulation of computational data via pen or stylus, aug-
mented by computer intelligence, goes back as far as Suther-
land’s Sketchpad [13] and the RAND Tablet by Davis et
al. [3], which incorporated the Graphical Input Language
(GRAIL) by Ellis et al. [4]. GRAIL is the first system
to our knowledge in which computer programs are created
via stylus input. In GRAIL, hand-drawn figures are auto-
matically recognized and converted to meaningful symbols
within the system, which may then be further modified with
stylus gestures, such as drawing connections between nodes
and scratching out symbols to erase them.

Recent developments in sketch-oriented computing include
Landay’s SILK, a software prototyping system in which user
interfaces are hand-sketched with a digital tablet [7]. Where
appropriate, sketched graphical widgets (buttons, sliders,
etc.) are recognized as such, and converted into actual in-
teractive widgets. Interestingly, recognized widgets are not
transformed into any canonical visual representation; rather
they retain the idiosyncrasies and hafnd-drawn character-
istics of the original sketched figures. The SILK system
further employs stylus gestures to describe transitions be-
tween different parts of the interface, offering an extent of
programmability for GUI interactions.

Object graph-based programming languages such as Pure-
data [12] and Max/MSP [19] have tremendously influenced
the space of visual computer music design and composition.
More recently, the Kronos programming language extended
functional programming models to a block diagram-based
visual space in the context of real-time music composition
and performance [11]. Mira, an iPad application, dynam-
ically replicates the interface of desktop-based Max/MSP
programs, joining conventional music software development
with touch interaction [14]. The Reactable [6] and the
work of Davidson and Han [2] have both provided signif-
icant foundational work in interacting with digital music
via touch and direct manipulation.

Languages designed (or repurposed) for live-coding, such
as SuperCollider [9] and ChucK [15], suggest interesting
possibilities for the expressive use of natural input for mu-
sic programming. Such systems also constitute the modern
incarnation of unit generator-based sound design and syn-
thesis, to which this work owes much of its technical un-
derpinnings. Live-coding practice in general is discussed by
Collins et al. [1] and Wang and Cook [17].

Work from the commercial iPhone developer Smule has
explored the space of possibilities for musically enabling
mobile touchscreen devices [18]. Smule’s Ocarina is both
an iPhone musical instrument and a musical/social experi-
ence, in which performers tune in to each others’ musical
renditions around the world [16]. Ocarina’s feature set (four
finger-sized tone-holes on the touchscreen, breath input for
dynamic control, tilt-based vibrato, and location-based so-
cial networking) is tailored specifically to the technical capa-
bilities, physical dimensions, and limitations of the iPhone.
This approach to design — the deliberate consideration of
what interactions leverage the characteristic features of a
technological platform, and of what interactions are dis-
tinctly unsuitable — has directly influenced the develop-
ment of Auraglyph.

3. A CASE FOR HANDWRITING INPUT IN
COMPUTER MUSIC DESIGN

This work is motivated by the desire to better understand
the distinguishing capabilities and limitations of touchscreen
technology, and, using these as guiding principles, to enable
expressive musical interactions on such devices. Complex
software developed for a given interaction model — such as
keyboard-and-mouse — may not successfully cross over to a
different interaction model — such as a touchscreen device.

The initial insight leading to this work was that numeric
and text input on a touchscreen might be more effectively
handled by recognizing hand-drawn numerals and letters,
rather than an on-screen keyboard. We soon realized that
we could use handwriting recognition to analyze a substan-
tial number of handwritten figures and objects beyond just
letters and numbers. A user might then draw entire ob-
ject graphs and audio topologies to be realized as an audio
system or musical composition by the underlying software
application in real-time.

Evidenced by the previously mentioned work of Garcia et
al., handwritten planning is a vital component of many com-
positional processes, whether the resulting musical product
is electronic, acoustic, or both. More generally, writing and
drawing with a pen or pencil on a flat surface is a founda-
tional expressive interaction for an incredible number of in-
dividuals; this activity is continuously inculcated from early
childhood around the world. Therefore sketching, as a nat-
ural interaction for expressing ideas in the real world, might
be apt for realizing them in a virtual world. The original
work described herein seeks to apply this to the context of
computer music and audio design. By shortening the dis-
tance between a users’ abstract musical thought and the au-
dible realization of that thought, handwriting input might
arm its users to more effectively express those thoughts.

Another distinct advantage of handwriting input in this
context is the ability to run and evaluate musical constructs
in real-time. As in Landay’s SILK, sketches in Auraglyph
are reified into entities specific to the system (e.g., a drawn
object might be converted to a sine wave generator, or a
timer). These entities can then present controls and inter-
faces for direct touch manipulation or stylus gestures, cus-
tomized to that object type or mode. This level of real-time
creation and manipulation affords a composer or program-
mer expressive control similar to live-coding.

4. INTERACTING WITH AURAGLYPH
As a framework to prototype and evaluate the concepts dis-
cussed above, and for use in composition and sound design,
we developed Auraglyph, a software application for iPad.
A user interacts with Auraglyph using an iPad-compatible
stylus (many models of which are widely available) and tra-
ditional touch interaction.

The basic environment of Auraglyph is an open, scrol-
lable canvas in which the user freely draws. Using a variety
of pen strokes, a user creates interactive objects (such as
unit generators, control rate processors, and input/output
controls), sets parameters of these objects, and forms con-
nections between them. Collectively, these objects and their
interconnections form a patch. After a user completes a pen
stroke (a single contour between touching the pen to the
screen and lifting it off the screen), it is matched against the
set of base object glyphs available in the main canvas, via
a handwriting recognition algorithm (discussed in Section
4.2). Main canvas objects whose glyphs can be matched in-
clude an audio rate processor (unit generator), control rate
processor, input, or output (see Section 4.1). If the stroke
matches an available glyph, the user’s stroke is replaced by

Proceedings of the International Conference on New Interfaces for Musical Expression

107



Figure 2: A full Auraglyph patch, with annotations.

the actual object. Unmatched strokes remain on the can-
vas, allowing the user to embellish the canvas with freehand
drawings.

Tapping and holding an object will open up a list of pa-
rameters for that object (Figure 3). Selecting a parameter
from this list opens a control into which writing a num-
ber will set the value. This value can then be accepted
or discarded, or the user can cancel setting the parameter
entirely.

Every base object may have inputs, an output, or both.
These appear visually as small circles, or nodes, on the
perimeter of the object. Drawing a stroke from an input
node to an output node, or vice-versa, forms a connection
between those two objects. For example, connecting a saw-
tooth object’s output to the freq input of a sine object
creates a simple FM (frequency modulation) patch, with
the sine as the carrier wave and the sawtooth as the mod-
ulator. Most objects only have one output source, but an
input node may have several destinations within that object
(e.g. frequency, amplitude, or phase of a given oscillator).
In such cases, a pop-up menu appears from the node to
display the options a user has for the input destination.

Objects and freehand drawings can be moved around on
the canvas by touching and dragging them, a familiar ges-
ture in the touchscreen software ecosystem. While dragging
an object, moving the pen over a delete icon in the corner
of the screen will remove that object, along with destroying
any connections between it and other objects. Connections
can be removed by grabbing them with a touch and then
dragging them until they “break.” The entire canvas may
be scrolled through using a two-finger touch, allowing for
patches that extend well beyond the space of the tablet’s
screen.

4.1 Objects
Four base types of objects can be drawn to the main can-
vas: audio-rate processors (unit generators; represented by
a circle), control-rate processors (represented by a square),
inputs (a downward-pointing triangle), and outputs (an up-
ward triangle) (Figure 4). Unit generators currently avail-
able include basic oscillators (sine, sawtooth, square, and
triangle waves, plus hand-drawn wavetables), an audio file
player, envelopes (linear and ADSR), filters (resonant low-

Figure 3: Modifying the “freq” parameter of a unit
generator with handwritten numeric input.

pass, high-pass, band-pass, band-reject, parametric EQ, or
hand-drawn transfer function), and a reverberator. Control-
rate processors include timers, counters, mathematical for-
mulae, discrete time-step sequencers, a pitch-to-frequency
converter, and hand-drawn parameter control curves. In-
puts consist of on-screen keyboard controllers, graphical
sliders, and buttons. Outputs consist of numeric displays
and binary “LED” indicators.

Figure 4: Base objects (left to right): unit genera-
tor, output, input, control-rate processor.

After creating a base object, a drawing area and menu
open to allow the user to select an object sub-type. In some
cases, a glyph for the sub-type can be directly drawn by
the user to select that object. For example, basic oscillators
and filter types lend themselves to simple glyph patterns.
A user can create a sine wave oscillator by simply drawing
a circle (creating a generic unit generator object) and then
drawing a sine wave within it.

Some object sub-types do not have straightforward glyph
mnemonics, for example a sequencer or a reverberator. To
support such objects, a menu appears after creating a base
object, displaying a list of subtypes to select from. For
completeness, objects that can be drawn as corresponding
glyphs are also listed in this menu.

Some objects have more advanced needs for modifying
values beyond the standard parameter editor. For exam-
ple, the wavetable oscillator’s table parameter brings up
a large input space for precisely drawing the desired wave-
form, as does the xferFn (transfer function) parameter of
the hand-drawn filter. The formula object eschews the stan-
dard parameter editor entirely, instead directly soliciting
handwriting input of a sequence of mathematical opera-
tions (currently addition, subtraction, multiplication, and
division are supported, with one input and one output).

4.2 Implementation of Handwriting Recogni-
tion

The concepts presented herein are generally invariant to
the underlying algorithms and framework for handwriting
recognition, but these topics merit discussion with regards
to our own implementation in Auraglyph. The handwrit-
ing recognition engine used by Auraglyph is LipiTk [8], a
comprehensive open-source project for handwriting recog-
nition research. LipiTk is not natively designed to function
with iPad applications, but we extended it to do so with
straightforward code changes and additions.

LipiTk’s default configuration uses dynamic time warp-
ing (DTW) [10] and nearest-neighbor classification (k-NN)
to match pen strokes to a pre-existing training set of pos-

Proceedings of the International Conference on New Interfaces for Musical Expression

108



sible figures. The result of this procedure is one or more
“most likely” matches along with confidence ratings for each
match. We have found the speed and accuracy of LipiTk
in this configuration to be satisfactory for real-time usage,
though a slight, noticeable delay exists between finishing a
stroke and the successful recognition of that stroke.

Before they can be used to classify figures of unknown
types, the recognition algorithms incorporated into LipiTk
must be primed with a set of “training examples” for each
possible figure to be matched. This training set is typi-
cally created by test users before the software is released,
who draw multiple renditions of each figure into a special-
ized training program. This training program serializes the
salient features of each figure into a database, which is dis-
tributed with the application itself.

In our experience, LipiTk’s recognition accuracy is highly
linked to the quality, size, and diversity of the training set.
For instance, a version of our handwriting database trained
solely by right-handed users suffered reduced accuracy when
used by a left-handed user. A comprehensive training set
would need to encompass strokes from a range of individu-
als of varying handedness and writing style. Interestingly,
though, LipiTk’s algorithms are able to adapt dynamically
to new training examples. An advanced system might grad-
ually adjust to a particular user’s handwriting eccentricities
over time, forming an organically personalized software in-
teraction. Auraglyph takes advantage of this feature to a
small degree, allowing a user to add new training strokes
via a separate training interface.

5. CONCLUSIONS
While effective in replacing the keyboard as a textual/numeric
input device, touchscreen stylus input also affords a broader
set of interactions apt for computer music. We have devel-
oped an iPad software application, Auraglyph, to leverage
these principles into an interactive music environment. We
intend to release Auraglyph under an open source license
when it is reasonably mature and bug-free, via the project
website. 1

This system has fulfilled our goals of expressivity and ver-
satility, but we believe this conceptual framework provides
many more opportunities for computer music. Stylus in-
put might be extended to traditional music notation, more
complex mathematical formulae, or even Turing-complete
programming code, whose digital representations can then
be refined, augmented, and extended with direct manipu-
lation and touch input. We believe that this is only the
beginning for handwritten computer music.

6. REFERENCES
[1] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.

Live coding in laptop performance. Organised Sound,
8(3):321–330, 2003.

[2] P. L. Davidson and J. Y. Han. Synthesis and control
on large scale multi-touch sensing displays. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 216–219.
IRCAM/Centre Pompidou, 2006.

[3] M. R. Davis and T. Ellis. The RAND tablet: A
man-machine graphical communication device. In
Proceedings of the October 27-29, 1964, fall joint
computer conference, part I, AFIPS ’64 (Fall, part I),
pages 325–331, New York, NY, USA, 1964. ACM.

[4] T. O. Ellis, J. F. Heafner, and W. Sibley. The GRAIL
language and operations. Technical report, DTIC

1https://ccrma.stanford.edu/~spencer/auraglyph/

Document, 1969.

[5] J. Garcia, T. Tsandilas, C. Agon, W. Mackay, et al.
InkSplorer: Exploring musical ideas on paper and
computer. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
2011.

[6] S. Jordà, G. Geiger, M. Alonso, and
M. Kaltenbrunner. The reacTable: Exploring the
synergy between live music performance and tabletop
tangible interfaces. In Proceedings of the 1st
International Conference on Tangible and Embedded
Interaction, TEI ’07, pages 139–146, New York, NY,
USA, 2007. ACM.

[7] J. A. Landay. Interactive sketching for the early stages
of user interface design. PhD thesis, Carnegie Mellon
University, 1996.

[8] S. Madhvanath, D. Vijayasenan, and T. M.
Kadiresan. LipiTk: A generic toolkit for online
handwriting recognition. In ACM SIGGRAPH 2007
courses, page 13. ACM, 2007.

[9] J. McCartney. Rethinking the computer music
language: Supercollider. Computer Music Journal,
26(4):61–68, 2002.

[10] R. Niels, L. Vuurpijl, et al. Using dynamic time
warping for intuitive handwriting recognition. In
Advances in Graphonomics, Proceedings of the 12th
Conference of the International Graphonomics
Society, pages 217–221, 2005.

[11] V. Norilo. Visualization of signals and algorithms in
Kronos. In Proceedings of the International
Conference on Digital Audio Effects, York, U.K.,
2012.

[12] M. Puckette et al. Pure Data: Another integrated
computer music environment. Proceedings of the
Second Intercollege Computer Music Concerts, pages
37–41, 1996.

[13] I. E. Sutherland. Sketch Pad: A man-machine
graphical communication system. In Proceedings of
the SHARE design automation workshop, pages
6–329. ACM, 1964.

[14] S. Tarakajian, D. Zicarelli, and J. K. Clayton. Mira:
Liveness in iPad controllers for Max/MSP. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, Daejeon, Korea,
2013.

[15] G. Wang. The ChucK Audio Programming Language:
A Strongly-timed and On-the-fly Environ/Mentality.
PhD thesis, Princeton University, Princeton, NJ,
USA, 2008.

[16] G. Wang. Ocarina: Designing the iPhone’s magic
flute. Computer Music Journal, 38(2), 2014.

[17] G. Wang and P. R. Cook. On-the-fly programming:
Using code as an expressive musical instrument. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 138–143.
National University of Singapore, 2004.

[18] G. Wang, G. Essl, J. Smith, S. Salazar, P. Cook,
R. Hamilton, R. Fiebrink, J. Berger, D. Zhu,
M. Ljungstrom, et al. Smule= sonic media: An
intersection of the mobile, musical, and social. In
Proceedings of the International Computer Music
Conference, pages 16–21, 2009.

[19] D. Zicarelli. An extensible real-time signal processing
environment for MAX. In Proceedings of the
International Computer Music Conference, 1998.

Proceedings of the International Conference on New Interfaces for Musical Expression

109




