
miniAudicle for iPad
Touchscreen-based Music Software Programming

Spencer Salazar
spencer@ccrma.stanford.edu

Ge Wang
ge@ccrma.stanford.edu

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University

Stanford, CA

Figure 1. miniAudicle for iPad.

ABSTRACT

We present a new software application for ChucK pro-
gramming and performance on mobile touchscreen devices,
miniAudicle for iPad. This application seeks to accommo-
date keyboard-based music software development as well
as explore new music programming possibilities enabled
by touch interfaces. To this end, it provides a textual code
Editor mode optimized for touchscreen typing, a live-coding-
oriented Player mode, and collaborative network perfor-
mance via a Connect mode. The combination of these fea-
tures provides a foundation for the exploration of musical
programming on mobile touchscreen devices.

1. INTRODUCTION

Recent years have seen dramatic shifts in mainstream human-
computer interaction, as multitouch mobile phone and tablet
devices have taken hold of the popular technological zeit-
geist. These trends have caused massive changes in both
the way we work with technology and the way we think
about technology. The prevalence of touchscreens has given
software designers and researchers a vast dimension of in-
teraction models to work with, a dimension we have only

Copyright: c©2014 Spencer Salazar et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

begun to explore. The intrinsic mobility and effective ubiq-
uity of these devices have further increased the depth and
transparency of mainstream computing.

In this work we examine an often overlooked possibility
of mobile touchscreen computing, that of music software
programming. To this end, we have designed and imple-
mented an iPad application for real-time coding and per-
formance in the ChucK music programming language [1].
This application shares much of its design philosophy, source
code, and visual style with the miniAudicle editor for desk-
top ChucK development [2], and thus we call it miniAudi-
cle for iPad.

The goals miniAudicle for iPad are to provide a satisfac-
tory method for creation and editing of non-trivial ChucK
code, and to fully leverage the interaction possibilities of
mobile touchscreen devices. Our approach to these goals
is to provide three complementary modes: Editor mode,
Player mode, and Connect mode. Editor mode aims to pro-
vide the best code editor possible given the limitations of
typing text on a touchscreen. Player mode allows users
to play and modify scripts concurrently using ChucK’s in-
trinsic on-the-fly programming capabilities. It aims to en-
able multitouch live-coding and performance techniques
that would be difficult or impossible on traditional desk-
top computers. Connect mode extends Player mode to a
networked performance, in which multiple players on net-
work connected iPads collaboratively live-code music in
real-time. We believe the combination of these three sys-

mailto:spencer@ccrma.stanford.edu
mailto:ge@ccrma.stanford.edu
http://creativecommons.org/licenses/by/3.0/


tems makes miniAudicle for iPad a compelling mobile sys-
tem for music programming and live coding.

2. RELATED WORK

Naturally, much of this work draws from desktop computer-
based environments for music programming, such as the
original desktop miniAudicle [2], the Audicle [3], and Su-
perCollider [4]. Each of these systems combines conven-
tional code development with performative interfaces, ex-
plicitly enabling live coding of music [5]. The CoAudicle
extends musical live-coding to interactive network-enhanced
performance between multiple performers [6].

More recent developments in live-coding software sys-
tems have lead to ixi lang, which complements SuperCol-
lider with a domain-specific language designed for live-
coding [7], and Overtone, which uses the Clojure program-
ming language to control SuperCollider’s core synthesis
engine [8]. Ableton’s Live software is not technically a
programming system, but its model of sequencing distinct
musical “objects” has influenced our development of mini-
Audicle for iPad’s Player mode [9].

In the domain of general purpose computing, TouchDe-
velop is a touch-based text programming environment de-
signed for use on mobile phones, in which programming
constructs are selected from a context-aware list, dimin-
ishing the dependence on keyboard-based text input [10].
Codea is a Lua-based software development system for
iPad in which text editing is supplemented with touch ges-
tures for parameter editing and mapping [11]. Many canon-
ical interactions for music sequencing and programming
on a touchscreen device can be traced back to the Reactable
[12] and the work of Davidson and Han [13], two early ex-
plorations of the application of touchscreen technology to
computer music.

A number of software applications from iPhone devel-
oper Smule have begun to delineate the space of possibil-
ities for mobile music computing [14]. Ocarina is both a
musical instrument, designed uniquely around the iPhone’s
interaction capabilities, and a musical/social experience, in
which performers tune in to each others’ musical rendi-
tions around the world [15]. World Stage takes this model
a step further, by congregating groups of users into a live
“American Idol”-like panel for critiquing and rating perfor-
mances on a mobile phone instrument [16]. The concep-
tual background of these endeavors stems from research in
the Princeton Laptop Orchestra [17], the Stanford Laptop
Orchestra [18], and the Small Musically Expressive Lap-
top Toolkit [19]. Each of these efforts examines the explicit
affordances of the laptop as a musical instrument in its own
right, rather than as a generic unit of computing.

3. BACKGROUND AND MOTIVATIONS

In our experience, mobile touchscreen devices have been
largely overlooked for use in computer music software de-
velopment. As these technologies have become widespread,
it is not sufficient to sit back and watch inappropriate, pre-
existing interaction models be forced into the mobile touch-
screen metaphor. Rather, it is incumbent upon the research

community to explore how best to leverage the unique as-
sets and drawbacks of this new paradigm, which is evi-
dently here to stay. Similar trends might be seen in the shift
in computer music from mainframes and dedicated syn-
thesizers to the personal computer in the 1980s, and then
to the laptop, now ubiquitous in modern computer music
performance practice. As these computing paradigms gave
way from one to another, the software tools and interaction
metaphors adjusted to better take advantage of the domi-
nant paradigm.

Therefore, our overriding design philosophy for miniAu-
dicle for iPad was not to transplant a desktop software de-
velopment environment to a tablet, but to consider what in-
teractions the tablet might best provide for us. At the same
time, it is not entirely reasonable to completely discard the
desktop metaphor, which, in our case, is that of typing code
into an editor. Ultimately, the fundamental unit of ChucK
programming is text.

For these reasons we have firstly sought to create the best
code editing interface we could for a touchscreen device.
Typing extensive text documents on touchscreens is widely
considered undesirable. However, using a variety of pop-
ular techniques like syntax highlighting, auto-completion,
and extended keyboards, we can optimize this experience.
With these techniques, the number of keystrokes required
to enter code is significantly reduced, as is the number of
input errors produced in doing so. Additional interaction
techniques can improve the text editing experience beyond
what is available on the desktop. For example, one might
tap a unit generator typename in the code window to bring
up a list of alternative unit generators of the same category
(e.g. oscillators, filters, reverbs). Tapping a numeric literal
could bring up a slider to set the value, where a one-finger
swipe adjusts the value and a two finger pinch changes the
granularity of those adjustments.

Secondly, we believe that live-coding performance is a
fundamental aspect of computer music programming, and
contend that the mobile touchscreen paradigm is uniquely
equipped to support this style of computing. Live-coding
often involves the control and processing of many scraps of
code, with multiple programs interacting in multiple levels
of intricacy. Direct manipulation, the quintessential feature
of a multitouch screen, might allow large groups of ”units”
— individual ChucK scripts — to be efficiently and rapidly
controlled in real-time. This is the basis of miniAudicle for
iPad’s Player mode, in which a user assembles and inter-
acts with any number of ChucK programs simultaneously.

Furthermore, we fundamentally believe in the power of
the network. As seen in Ocarina, World Stage, and re-
lated systems, musical interactions mediated by a wide-
area computer network can create unique musical experi-
ences among its users. These interactions are distinctive
from those possible in the real world, being effectively
anonymous and instantaneous, and having the potential to
engage countless users on a massive scale. We have sought
to apply these concepts to musical live-coding in Connect
mode, an extension to Player mode that enables collabora-
tive musical programming over the network.

Lastly, we are interested in the physicality of the tablet



form-factor itself. The iPad’s hardware design presents a
number of interesting possibilities for musical program-
ming. For instance, it is relatively easy to generate au-
dio feedback by directing sound with one’s hand from the
iPad’s speaker to its microphone. A ChucK program could
easily tune this feedback to musical ends, while the user
maintains manual control over the presence and charac-
ter of the feedback. The iPad contains a number of envi-
ronmental sensors, including an accelerometer, gyroscope,
and compass. ChucK programs that incorporate these in-
puts might use them to create a highly gestural musical
interaction, using the tablet as both an audio processor and
as a physical controller.

4. INTERACTION DESIGN

Interaction in miniAudicle for iPad is divided between three
primary modes, Editor mode, Player mode, and Connect
mode, described individually below. Several interface el-
ements are common to all three modes. First of these is
a script browser which allows creating, managing, and se-
lecting individual ChucK programs to load into either mode.
Views of ChucK’s console output (such as error messages
and internal diagnostics) and a list of the ChucK shreds
(processes) running in the system are available from the
main application toolbar. This toolbar also contains a switch
to toggle between Editor and Player modes, while Connect
mode, an enhancement of Player mode, is accessed from a
button within that mode.

4.1 Editor

Editor mode is the primary interface for writing and testing
ChucK code. This mode is centered around a touch-based
text editing view, in which a single ChucK source docu-
ment is presented at a time (Figure 2). The document to
edit can be changed via the script browser. Once a doc-
ument is loaded, the text view provides a number of fea-
tures common to programming text editors, such as syntax-
based text coloring and integrated error reporting. Addi-
tionally, the on-screen keyboard has been supplemented
with ChucK-specific keys for characters and combinations
thereof that appear frequently in ChucK programs. These
additional keys include the chuck operator (=>) and its
variants, mathematical operators, a variety of brace char-
acters, additional syntax characters, and the now/dac key-
words.

This mode also features buttons for adding, replacing,
and removing the currently edited ChucK script, enabling a
small degree of on-the-fly programming and performance
capabilities.

4.2 Player

Player mode is designed for live performance, on-the-fly
programming, and real-time musical experimentation . In
this mode, selected ChucK scripts are displayed as small
tabs in a large open area (Figure 3).

The script tabs can be rearranged in the space by mov-
ing them with touch, with new tabs created via the script
browser. Each tab has prominent buttons to add the script

Figure 2. Editor mode.

the virtual machine, replace it, and remove it, enabling
basic on-the-fly programming of each script in the player
(Figure 4). 1 A script can be added multiple times, and cur-
rently running scripts are visualized by one or more glow-
ing dots on that scripts tab. Pressing a dot removes the
iteration of the script that that dot represents. An arrow
button on the tab pops open a mini-editor for that script,
from which the full editor mode can also be opened if de-
sired.

Pressing and holding the add button will cause three more
buttons to appear below it, on the left, and on the right: one
causes the program to loop infinitely (until it is manually
removed), one loops it a user-selected number of times,
and one allows sequencing a different script after this script
completes. Finite looping and sequencing can be used in
conjunction with one another, allowing scripts to run a
number of times before advancing to the next script in the
sequence. Pressing and holding any tab outside of the but-
ton areas will cause delete buttons to appear above all tabs,
a common interaction for deleting items from collections
in touchscreen apps.

The design of Player mode is theoretically not limited
to the touchscreen environment; one can easily imagine
a similar design for desktop computers using mouse-and-
keyboard interaction. However, touchscreens allow a level
of direct, simultaneous interaction with Player mode that is
not feasible using keyboard-and-mouse. Using touch con-

1 A brief ChucK on-the-fly programming primer: adding a script
causes it to be compiled and executed, generating whatever sounds and
manipulating whatever data it was programmed to do. A script running in
the virtual machine is referred to as a shred. Replacing it causes the cur-
rently executing version of the shred to be removed, and the latest version
of the script to replace it. Removing it simply stops it from executing.



Figure 3. Player mode.

trol, multiple scripts can be fired off or removed instantly,
different combinations of shreds can be quickly configured
and evaluated, and multiple edited scripts can be replaced
on-the-fly in tandem. These sorts of interactions are not
impossible in mouse-and-keyboard environments, but typ-
ically are held back by the sluggishness of mouse naviga-
tion, or require the use of arcane key command sequences.

Figure 4. An individual tab in player mode. In addition
to buttons for on-the-fly programming, the green dots rep-
resent individual program instances (shreds) that are cur-
rently running. Pressing a green dot removes that instance.
Pressing the disclosure arrow opens a mini-editor for the
script, and modified versions of the script can replace a
running shred.

4.3 Connect

Connect mode, an extension of Player mode, allows mini-
Audicle programmers to collaboratively perform and hack
ChucK code over the network (Figure 5). In this mode,
multiple Player sessions from disparate iPads are essen-

tially combined into a single session. As networked play-
ers add, remove, and modify programs, these changes are
propagated to each other player in the session, constructing
a single, collaborative performance. Furthermore, looping
and sequencing features of Player mode are also enabled in
Connect mode, allowing for advanced musical twists and
segues.

Connect mode is initiated by pressing the “Connect” but-
ton in Player mode, opening a small dialog to allow setting
connection parameters, such as username, geographic lo-
cation, and whether to join an existing session or to create
a new one. Once a user is connected to a session (possibly
one that he or she just created), a list of other users in the
session (if any) is displayed. Each ChucK script tab dis-
plays the username of the player who originated it. Tabs
are also color-coded to indicate which are owned by the
local player and which are owned by remote players — a
player can only interact with scripts he or she created, al-
though the source code for each script can be examined
by anyone in the session. We intend for the ability to view
another player’s code to spur code sharing and the dissemi-
nation of music software techniques. Finally, a player may
disconnect from the session at any time by pressing a “Dis-
connect” button.

Figure 5. Connect mode.

4.3.1 Network Back-end

The network interactions that encompass Connect mode
are supported by a central miniAudicle server, which man-
ages players, sessions, and the interactions between them.
The server software is implemented in Python using the



Twisted framework, 2 and uses Representational State Trans-
fer (REST) over HTTP to communicate with the client.
Each action a player takes in Connect mode is encoded as
a JSON data structure, and uploaded to the server.

While engaged in a Connect session, the client software
continuously polls the server for new actions, such as a
user adding a shred or modifying and replacing an exist-
ing shred. When a new action is received from the server,
it is immediately enacted on the client. In effect, each
client of the session simultaneously runs every ChucK pro-
gram from every user in the session. As a result, sample-
accuracy between every shred is maintained in a given ses-
sion on a given client. Using ChucK’s innate strong-timing
functionality, intricate and consistent rhythmic patterns can
be constructed between programs from multiple individu-
als in a session. However, latency must obviously exist be-
tween when, for example, one user adds a shred on his own
tablet, and when that action is reflected on another player’s
tablet over the network. As the practice of networked live-
coding in ChucK matures, we anticipate the development
of software techniques to address the drawbacks of these
physical realities.

5. FUTURE WORK AND CONCLUSIONS

Of critical importance in any interactive software system is
the evaluation of that system with respect to its goals and
overall user experience. We intend to assess miniAudicle
for iPad in these regards in upcoming research efforts. This
might involve formalized user testing, with users spanning
a range of skill levels in ChucK programming, statistical
analysis of Connect-mode performance sessions, and the
development of touchscreen-based live coding performances
in the concert setting.

Yet to be explored in this system is the deeper social dy-
namics of a networked live-coding community, and how
the design of the Connect system might provoke or dis-
courage certain musical behaviors. For example, networked
live-coding sessions could be opened for anyone to lis-
ten in, and especially popular or productive players on the
miniAudicle network might be promoted within it. We
chose not to enable explicit communication between Con-
nect players other than the ChucK code itself; it merits con-
sideration whether allowing in-session chat would lead to
stronger musical collaboration, or if it would distract from
purely musical creative processes. The experience of de-
veloping and supervising the World Stage [16] provides
many lessons for such building of online musical commu-
nities.

We believe that miniAudicle for iPad provides a com-
pelling foundation for the exploration of music program-
ming and live-coding performance on mobile touchscreen
devices. A touch-augmented text editor, advanced live-
coding functionality, and networked performance features
combine into a computer music environment that leverages
the principal features of touchscreen computing while re-
taining the immense expressivity of textual programming.
As we apply final touches and polish, we will release mini-

2 https://twistedmatrix.com/

Audicle for iPad both in the Apple App Store and as source
code under an open source license. We hope that this work
might help to compel further consideration and research of
music programming on mobile touchscreen systems.

6. REFERENCES

[1] G. Wang, “The ChucK audio programming language:
A strongly-timed and on-the-fly environ/mentality,”
Ph.D. dissertation, Princeton University, Princeton, NJ,
USA, 2008.

[2] S. Salazar, G. Wang, and P. Cook, “miniAudicle and
ChucK Shell: New interfaces for ChucK development
and performance,” in Proceedings of the International
Computer Music Conference, 2006, pp. 63–66.

[3] G. Wang and P. R. Cook, “The Audicle: A
context-sensitive, on-the-fly audio programming en-
viron/mentality,” in Proceedings of the International
Computer Music Conference, 2004, pp. 256–263.

[4] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[5] N. Collins, A. McLean, J. Rohrhuber, and A. Ward,
“Live coding in laptop performance,” Organised
Sound, vol. 8, no. 3, pp. 321–330, 2003.

[6] G. Wang, A. Misra, P. Davidson, and P. R. Cook,
“CoAudicle: A collaborative audio programming
space,” in In Proceedings of the International Com-
puter Music Conference, 2005.

[7] T. Magnusson, “ixi lang: a SuperCollider parasite for
live coding,” in Proceedings of International Computer
Music Conference. University of Huddersfield, 2011,
pp. 503–506.

[8] S. Aaron and A. F. Blackwell, “From Sonic Pi to
Overtone: Creative musical experiences with domain-
specific and functional languages,” in Proceedings of
the First ACM SIGPLAN Workshop on Functional Art,
Music, Modeling and Design. New York, NY, USA:
ACM, 2013, pp. 35–46.

[9] “Ableton Live,” https://www.ableton.com/en/live/.

[10] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahn-
drich, “TouchDevelop: Programming cloud-connected
mobile devices via touchscreen,” in Proceedings of
the 10th SIGPLAN Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Soft-
ware, ser. ONWARD ’11. New York, NY, USA:
ACM, 2011, pp. 49–60.

[11] S. San̈s, “Codea,” http://twolivesleft.com/Codea/, ac-
cessed: 2014-3-28.

[12] S. Jordà, G. Geiger, M. Alonso, and M. Kaltenbrun-
ner, “The reacTable: Exploring the synergy between

https://www.ableton.com/en/live/
http://twolivesleft.com/Codea/


live music performance and tabletop tangible inter-
faces,” in Proceedings of the 1st International Confer-
ence on Tangible and Embedded Interaction, ser. TEI
’07. New York, NY, USA: ACM, 2007, pp. 139–146.

[13] P. L. Davidson and J. Y. Han, “Synthesis and control on
large scale multi-touch sensing displays,” in Proceed-
ings of the 2006 Conference on New Interfaces for Mu-
sical Expression. IRCAM/Centre Pompidou, 2006,
pp. 216–219.

[14] G. Wang, G. Essl, J. Smith, S. Salazar, P. Cook,
R. Hamilton, R. Fiebrink, J. Berger, D. Zhu,
M. Ljungstrom et al., “Smule= sonic media: An inter-
section of the mobile, musical, and social,” in Proceed-
ings of the International Computer Music Conference,
2009, pp. 16–21.

[15] G. Wang, “Ocarina: Designing the iPhone’s magic
flute,” Computer Music Journal, vol. 38, no. 2, 2014.

[16] G. Wang, J. Oh, S. Salazar, and R. Hamilton, “World
Stage: A crowdsourcing paradigm for social/mobile
music,” in Proceedings of the International Computer
Music Conference, 2011.

[17] S. Smallwood, D. Trueman, P. R. Cook, and G. Wang,
“Composing for Laptop Orchestra,” Computer Music
Journal, vol. 32, no. 1, pp. 9–25, Spring 2008.

[18] G. Wang, N. Bryan, J. Oh, and R. Hamilton, “Stanford
Laptop Orchestra (SLOrk),” in In Proceedings of the
International Computer Music Conference, 2009.

[19] R. Fiebrink, G. Wang, and P. R. Cook, “Don’t forget
the laptop: Using native input capabilities for expres-
sive musical control,” in Proceedings of the 7th inter-
national conference on New interfaces for musical ex-
pression. ACM, 2007, pp. 164–167.


	 1. Introduction
	 2. Related Work
	 3. Background and Motivations
	 4. Interaction Design
	4.1 Editor
	4.2 Player
	4.3 Connect
	4.3.1 Network Back-end


	 5. Future Work and Conclusions
	 6. References

